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Abstract Distributed networks of stationary instru-
ments provide high temporal scope (i.e., range/resolu-
tion) observations but are spatially limited as a set of
point measurements. Measurement similarity between
points typically decays with distance, which is used to
set interpolation distances. The importance of analyz-
ing spatiotemporal data at equivalent spatial and tem-
poral scales has been identified but no standard proce-
dure is used to interpolate space using temporally-
indexed observations. Using concurrent mobile and
stationary active acoustic, fish density data from a tidal
energy site in Puget Sound, WA, USA, six methods
are compared to estimate the range at which stationary
measurements can be spatially interpolated. Four
methods estimate the representative range of the mean
using autocorrelation or paired t-test and repeated
measures ANOVA. Accuracy of resulting sensor den-
sity estimates was modeled as departures from inter-
polated linear and aerial estimates. Two methods were
used to estimate representative range of the variance
by comparing theoretical spectra or by determining
equivalent spatial and temporal scales. Representative
ranges of means extended from 30.57 to 403.9 m.

Estimation error (i.e., standard deviation) ranges of
linearly interpolated or aerially extrapolated values
ranged from 42.5 to 82.3%. Representative ranges
using variance measurements differed by a factor of
approximately two (scale equivalence = 648.7 m, the-
oretical = 1388.1 m). A six-step decision tree is pre-
sented to guide identification of monitoring variables
and choice of method to calculate representative
ranges in distributed networks. This approach is appli-
cable for networks of any size, in aquatic or terrestrial
environments, and monitoring the mean or variance of
any quantity.

Keywords Distributed networks . Representative
range . Point sensors . Spatial representativeness

Introduction

When monitoring aquatic ecosystems, samples are tra-
ditionally collected from mobile (e.g., survey vessels)
and/or fixed (e.g., moorings, bottom-mounted pack-
ages) platforms. Samples can be discrete or continuous
measurements that are used to detect change in relevant
quantities over space and/or time. Technological ad-
vances in sensor design, computer processing, data stor-
age, and data management (e.g., Godø et al. 2014) have
increased the number of biological and physical vari-
ables that can be measured from integrated networks of
point-source sensors (i.e., fixed platforms). Point-source
sensor networks (e.g., Porter et al. 2005) typically in-
crease deployment times relative to vessel-based,
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mobile surveys and are assumed more cost-effective for
long-term measurements due to reduced labor and ship-
time costs. This assumptionmay evolve as an increasing
number of surface and subsurface autonomous, mobile
platforms (e.g., sail drone, sea gliders) are available to
spatially sample over extended periods (i.e., months).

Challenges associated with drawing spatial infer-
ences from point-source measurements include identi-
fying what area a sample represents and quantifying
measurement uncertainty when interpolating measure-
ments between or among sensors. Biological similarity,
measured as community composition, density, or distri-
bution, typically decays with distance due to spatial
heterogeneity in physical habitats (Nekola and White
1999), biological aggregation (Roughgarden 1977), pre-
dation (Wiens 1976), and patchiness produced by envi-
ronmental constraints on organismal dispersal
(Garcillán and Ezcurra 2003) or physiological limita-
tions (e.g., Hubbell 2001). Measurement uncertainty is
related to the rate at which quantities change with time
and/or distance from an initial measurement (e.g., Ellis
and Schneider 1997). One consequence of distance de-
cay is that the correlation between two samples de-
creases with increasing distance until the correlation
approaches zero, and meaningful inferences about a
second sample can no longer be derived from the first.
This distance represents the range of independent sam-
ples. Interpolation of point measurements beyond this
radius increases uncertainty and interpretation errors
(Anttila et al. 2008; Martin et al. 2005; Milewska and
Hogg 2001). From a sampling optimization perspective,
additional measurements collected within this radius are
sub-optimal and the effort could be used to increase the
range of a survey. Rooted in Tversky and Kahneman’s
(1975) psychological concept of Brepresentativeness
heuristics,^ the maximum distance to which point mea-
surements can be used to resolve spatial variability in a
surrounding domain (i.e., defined area) is termed the
Bspatial representativeness^ of a point sample (Janis
and Robeson 2004). To avoid the wrath of our English
teachers who forbade the use of derivational suffixes
(i.e., Bness monsters^), we will use the term representa-
tive range rather than Bspatial representativeness.^

Representative range is not a new concept. It was first
used in meteorology to optimize the spatial coverage of
rain gauges and other meteorological sensors (Brooks
1947; Huff and Neill 1957). Early studies of meteorolog-
ical network design focused on identifying the number of
randomly placed rain gauges to achieve a predetermined

accuracy of mean rainfall in a spatial domain (e.g.,
Rycroft 1949). It was soon realized that optimum sensor
density is dependent on the quantity being measured and
the measurement objective (e.g., rainfall fore- or hind-
casting) of a network (Brooks 1947). Spatial autocorre-
lation influences the representative range of sensors,
which shifted research effort from determining the num-
ber of required sensors, to determining the distance or
range between sensors (e.g., Hershfield 1965;
Hutchinson 1969, 1970). Network optimization efforts
also shifted from determining the spatial autocorrelation
between sensors to quantifying the relative error intro-
duced by interpolating among points (Gandin 1970) or
areas (Kagan 1966). Since the 1970s, representative
range studies diversified to focus on the effects of spatial
and temporal binning (Ciach and Krajewski 2006) and
methods of post hoc network optimization such as cluster
analysis (e.g., Sulkava et al. 2011) and variogram nugget
time series (e.g., Janis and Robeson 2004). Despite these
advances, many network optimization methods proposed
in the 1960s and 1970s are still used to optimize the
design of meteorological networks (e.g., Milewska and
Hogg 2001; Ciach and Krajewski 2006).

Few ecological studies have examined relationships
between community structure and designs of stationary
sensor networks (Rhodes and Jonzén 2011), despite
extensive efforts to characterize relationships among
ecological quantities through time and over space
(Legendre 1993; Posadas et al. 2006; Soininen et al.
2007). Given that the deployment and operation of
sensor networks are typically resource limited, several
studies have quantified the optimal spatial and temporal
allocation of sampling effort based on the perceived or
known spatiotemporal variability within a domain (e.g.,
Gray et al. 1992; Kitsiou et al. 2001; Rhodes and Jonzén
2011), or have optimized sensor allocation within net-
works (e.g., Siljamo et al. 2008). The challenge when
designing stationary sensor networks is to determine the
number of sensors that are needed to meet sampling
objectives. This paper shifts the focus of network design
from, BHow many sensors can we afford?^ to BHow
many sensors do we need to meet our objective(s)?^

We used concurrent mobile and stationary data to
investigate the potential of six methods to a priori define
representative ranges for sensors in a distributed, sta-
tionary network. This approach contrasts to most mod-
ern techniques that use post hoc optimization (e.g., Janis
and Robeson 2004; Sulkava et al. 2011) for the same
purpose. The feasibility of each method is evaluated
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using a case study that was designed to acoustically
monitor fish densities at a Marine Renewable Energy
(MRE) tidal site in Puget Sound, WA, USA.

Methods

In this section, the theory, algorithms, and approach will
be described for the six methods used to calculate rep-
resentative ranges. Details of the case study site and
sampling follow method descriptions.

Calculating representative ranges

Six methods were chosen to quantify the representative
range of temporal, point measurements (Table 1). Four of
these methods estimate the representative range of the
mean of a monitoring metric, while the remaining two
estimate the representative range of the metric variance.
The sixmethodsmirror the evolution of techniques used to
optimize meteorological sensor networks and can broadly
be categorized in four approaches: distance between sen-
sors based on spatial correlation; sample size calculations
assuming random sampling to detect a minimum threshold
of change; maximization of spatial variance; and equiva-
lent scales of spatial and temporal variability.

The first approach calculates the optimum distance
between sensors based on the relationship of spatial
measurements. Using the decay of spatial autocorrela-
tion with distance (e.g., Anttila et al. 2008), the range at
which measurements become independent is set as the
representative range. This method evolved in the mid- to
late 1960s in meteorology (Hershfield 1965) and has the
most widespread acceptance in biological or ecological
studies (e.g., Jacobs 1989; Anttila et al. 2008). Spatial
autocorrelation models of representative range evolved
to models of interpolation error (e.g., Kagan 1966;
Gandin 1970; Milewska and Hogg 2001). Lacking a
meaningful error threshold to determine representative
range, interpolation error was traditionally used to quan-
tify the uncertainty within each method. In this study,
interpolation error curves for linear and areal interpola-
tion are used to quantify error for the four methods used
to quantify representative ranges of the mean.

The second approach quantifies the number of sensors
needed to detect change using paired samples evaluated
with t-tests in sample size calculations. Assuming that
random sampling will identify biological change (e.g.,
Rycroft 1949), point samples are used before and after a

perturbation. Three methods use this random sampling
approach: the number of replicates using a derivative of
minimum sample size calculations for a paired t-test
(Gray et al. 1992), a paired t-test/repeated measures
ANOVA (Sullivan 2006), and a sample size calculation
for a paired t-test including statistical power (Zar 2010).

Although changes in temporal variance can be used as
a metric of biological change (Underwood 1991), there is
no reason to assume that the temporal variance of a series
matches the spatial structure of the mean (e.g., Certain
et al. 2007; Damian et al. 2003; Sampson et al. 2001).
The third approach models the theoretical power spec-
trum of a temporal series as a function of the spatial
autocorrelation model developed for the second ap-
proach. Point measurements of temporal variance have
an equivalent spatial range over which they can be inter-
polated (i.e., spatial period). The spatial period where
95% of the maximum variance in fish density was ob-
served is set as the representative range of the variance.

The final approach compares empirical spatial and
temporal power spectra (i.e., distribution of variance in a
data series as a function of frequency) to identify equiv-
alent scales of spatial and temporal variability by iden-
tifying periods at which magnitudes of spatial and tem-
poral variability matched.

Representative range of the mean

Spatial autocorrelation

Lagged autocorrelation functions identify representative
ranges by quantifying relationships in a temporal or
spatial series (Legendre 1993; Mønness and Coleman
2011). Lagged Pearson’s product-moment correlation

coefficients ρ̂
:� �

define the correlation between all mea-
surements at a given lag (h), which can be simplified as

the covariance Ĉ
� �

of measurements at lag h standard-

ized by the variance σ̂2
� �

of the series:

ρ̂˙ hð Þ ¼ Ĉ hð Þ
σ̂
2 ð1Þ

where Ĉ is used to measure similarity. The lagged
autocorrelation is the degree to which two measure-
ments match relative to the variance in the series:

ρ̂̂˙ hð Þ ¼ ρ̂̂˙ 0ð Þe−αd ð2Þ
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where ρ̇̂ 0ð Þ is the autocorrelation at a spatial or temporal
lag of 0, d is the number of lags, and α is the range at
which the autocorrelation decays by a value of e (i.e.,
inverse scale height, Kagan 1972). In theory, ρ̇̂ 0ð Þ
should equal unity, indicating a perfect autocorrelation
at lag 0. In practice, these lags often deviate from unity
due to variability at scales below the sampling resolution
(g) that cannot be resolved (i.e., nugget effect). Lagged
correlation coefficients are used to estimate biological
patch sizes (e.g., Legendre 1993) and to determine
sampling resolutions that do not violate statistical as-
sumptions of independence (Schneider 1990). The
squared correlation coefficient is mathematically identi-
cal to the coefficient of determination (R2), both of
which quantify the proportion of variability attributed
to spatial correlation.

Assuming a random series, lagged correlation coef-
ficients are distributed around zero with a variance of
1/n, with n bins equaling the length of the data series.
Assuming a random distribution, the length of the 95%
confidence interval of lagged correlation coefficients is
2/√l, where l is the number of lags in the series.
Substituting 2/√l for ρ̇̂ hð Þ in Eq. 2, the representative
range (rrep) is the range given by the number lags (d) of
resolution or grain size g:

rrep ¼ −g

ln
2ffiffi
l

p
� �2
ρ̇̂̂ 0ð Þ

0
B@

1
CA

α

0
BBBBBBBB@

1
CCCCCCCCA

ð3Þ

A coefficient of determination model was used to
describe how similarity in fish density decayed over

distance in the Admiralty Inlet case study. Lagged
Pearson’s correlation coefficients were calculated using
backscatter data from each surface transect (n = 547),
then squared to create lagged coefficients of determina-
tion (R2). An exponential decay model was fit across all
transects to the lagged correlation coefficients and coef-
ficients of determination using a least squares algorithm.
Once the range was determined, the representative area
was defined by a circle with a radius equal to the
representative range. Representative range areas from
the corresponding circle were then standardized to a
square kilometer and used to calculate the density of
sampling packages required within the sampling
domain.

Random sampling size

Gray et al. (1992) determined the number of stations
n needed to detect a difference in community abun-
dance at temporal lag t when optimizing spatial
sampling effort and sample allocation. Sampling
effort is determined by:

n ¼ s2

RPE2x
2 ð4Þ

where s and x are the standard deviation and mean
of samples in a pilot study, and the Relative Percent
Error (RPE) is the minimum error as a proportion of
the mean. In an alternate approach, Sullivan (2006)
used a derivative of the sample size calculation (Eq.
4) in a repeated measures ANOVA for detecting the
mean difference in paired means, calculated from
measurements paired through time:

npairs ¼
Z1−α=2*σd

E

� �2

ð5Þ

Table 1 Properties of six methods used to estimate representative ranges of ecological point sensors

Method Quantity property Spatially explicit? Analytical approach Origin or reference

Spatial autocorrelation Mean Yes Autocorrelation Anttila et al. (2008)

Gray’s sample size calculation Mean No Paired t-test/repeated measures ANOVA Gray et al. (1992)

T-test sample size calculation Mean No Paired t-test/repeated measures ANOVA Sullivan (2006)

T-test power analysis Mean No Paired t-test/repeated measures ANOVA Zar (2010)

Theoretical spectra Variance Indirectly Modeled spatial power spectra Gilman et al. (1962)

Equivalent spatial and
temporal scales

Variance Indirectly Empirical spatial and temporal
power spectra

Wiens (1989)
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The Z-score critical value for a two-tailed test, Z1−α=2 ;

atα = 0.05 (i.e., 0.95 significance level) is 1.96. σd is the
standard deviation of the paired differences between
times at each station. The variance of differences be-
tween normal distributions is the sum of both variances.
Assuming variance remains constant through time, σd
can be expressed as:

σd ¼
ffiffiffiffiffiffiffiffiffiffi
2*σ2

t

q
ð6Þ

where σ2
t is the spatial variance at time t. If Eq. 4 is a

derivative of Eq. 5, then Eq. 4 underestimates the re-

quired sample size by a factor of Z1−α=2

� �2
, (=3.84 if

α = 0.05) by not including the squared Z test statistic in
the numerator and by another factor of 2 for not ac-
counting for the increased variance of the normal differ-
ence distribution. E in Eq. 5 is the absolute effect size,
which when standardized by the mean x produces the
RPE from Eq. 4:

RPE ¼ E

x
ð7Þ

Given a known sampling domain S over which σt is
measured, and assuming a relatively even distribution of
sensors, the representative area arep can be can then be
calculated as:

arep ¼ S
npairs

ð8Þ

Substituting Eq. 5 for npairs in Eq. 8:

arep ¼ S

Z1−α=2*σd

RPE*x

� �2 ð9Þ

The representative range corresponds to the radius
rrep of the circle defined in arep:

arep ¼ πr2rep ð10Þ

which can be combined with Eq. 9:

rrep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S

π*
Z1−α=2

*2σt

RPE*x

� �2

vuuut ð11Þ

Equation 11 is used to avoid type I errors associated
with a false positive test.

Power analysis calculations can also be used to iden-
tify the sample size required to identify changes with
adequate statistical power (Zar 2010). The required
number of pairs in a paired t-test power analysis is:

npairs ¼
σ2
d Z1−α=2 þ Zβ

� �2
E2
d

ð12Þ

where σ2
d can be calculated following Eq. 6. Both Z1−α=2

and Zβ represent critical Z-scores corresponding to sub-
jectively chosen α and β values. These values are com-
monly set to 1.96 (α = 0.05) and 0.84 (β = 0.80)
representing two standard deviations. Ed is analogous
to the effect size introduced in Eq. 5. The representative
range can then be calculated by substituting npairs into
Eqs. 8, 9, and 10.

These methods calculate the required sample size of
measurements paired through time and analyzed using a
paired t-test, where the number of pairs corresponds to
the number of sensors in a network. Observations are
only analyzed at two distinct times, comparing undis-
turbed and post-perturbation measurements. T-tests as-
sume a normal distribution of paired differences, which
is satisfied if both measurement sets are normally dis-
tributed by the normality of normal difference distribu-
tions (Zar 2010). A t-test sample size calculation assumes
random sampling, which treats all spatially distinct sam-
ples as random samples of the mean. Unlike autocorre-
lation analysis, which describes the range to which
inferences can be made, the sample size calculation
calculates the number of stations required to make state-
ments about the domain, if spatial variability is treated as
random variance. Sample size calculations require esti-
mates of spatial variability, which must be acquired from
spatially-indexed data. The more baseline spatially-
indexed data collected, the more accurate estimates of
the spatial variance become.

In the Admiralty Inlet case study, estimates of rrep
were calculated independently using Gray’s sample
size, t-test sample size, and power analysis formulas.
To remove the spatial autocorrelation from the series
due to non-random fish distributions (Bence 1995),
sample size calculations were conducted at statisti-
cally independent resolutions over the range of the
sampling grid. Sequentially sampled line-transects
were used to minimize the confounding of spatial
and temporal variance. The minimum acoustic effect
size, E, was arbitrarily set to 1 dB, which equates to a
25.9% change in fish density. A 1 dB re 1m−1 change
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compared to the grand mean of − 77 dB effect size of
1 dB translates to a RPE value of 0.0129

i:e:; �1 dB
−77 dB

		 		� �
. Alpha was set at 0.05, and beta in the

power analysis was conservatively set to 0.90.

Interpolation errors

Accuracy of sensor density estimates can be modeled
as deviations from interpolated estimates. Sensor
density can be optimized by setting the magnitude
or error in the linear (Gandin 1970) or areal (Kagan
1966) interpolation. The relative standard interpola-
tion error (RSIE) is the error introduced by interpo-
lating point measurements to distant points or areas.
When linearly interpolating between two points, the
RSIE is maximized at the midpoint of the vector
defined by those points. RSIE of linear interpolation
(Gandin 1970) is calculated as:

RSIEinterpolation:point ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2ρ2
d
2

� �
1þ ηþ ρ dð Þ

vuuut ð13Þ

where ρ(d) is the modeled exponential decay function
from Eq. 2 and η is defined as:

η ¼ 1−ρ 0ð Þ ð14Þ
For an arbitrary RSIE, Eq. 13 is solved to give the

maximum interpolation distance d.
Assuming that the representative area is a circle, the

representative range will be the radius of a circle. The
corresponding areal interpolation error (Kagan 1966) is
defined as:

RSIEinterpolation:area ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
ε þ 0:23σ2

p

ffiffiffi
S

p

D0

s
ð15Þ

where σ2
p is the temporal variance at the point, S is the

area over which the point is interpolated, D0 is the
inverse of range α in Eq. 2, and σ2

ε is defined as:

σ2
ε ¼ ησ2

p ð16Þ

Given a predetermined RSIEinterpolation.area in Eq. 13,
the equation can be solved for the area S, which is the
area of the circle defined by radius rrep:

S ¼ D0 RSIE2−σ2
ε

� �
0:23*σ2

p

 !2

ð17Þ

and then solved for rrep as a function of S, similar to Eqs.
8, 9, 10, and 11:

rrep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0 RSIE2−σ2

εð Þ
0:23*σ2

p

� �2

π

vuuut
ð18Þ

RSIE analysis is based on exponential decay in spatial
autocorrelation. Even if RSIE is not used to determine the
representative range of point sensors within networks, it
can be used to estimate interpolation errors. In the absence
of a meaningful RSIE threshold, RSIE curves can be used
to describe the error in the three representative ranges
identified using correlation coefficientmodels (i.e., Gray’s
sample size calculation, t-test sample size calculations,
and power analysis). RSIE analysis can be conducted for
any data used to estimate autocorrelation. The only addi-
tional requirement is an estimate of the temporal variance
when interpolating a point measurement to a surrounding
area (see Eq. 15). Except for Eq. 15, every parameter is
derived from the spatial autocorrelation, estimated using
spatially-indexed data. In the Admiralty Inlet test case,
temporal variance, in Eq. 15, was calculated using data
from a point-source (i.e., echosounder) but could be cal-
culated using repeated, spatially-indexed data.

Representative range of the variance

Theoretical spectra

Temporal variability of the mean varies through space in
ecological quantities (Certain et al. 2007;Damian et al. 2003;
Hocke and Kämpfer 2011), with high temporal variability
often spatially aggregated. Point measurements used to esti-
mate temporal variance also have a representative range.

The first technique to estimate the representative
range of temporal variance is a combination of autocor-
relation and spectral power (i.e., variance in a series as a
function of frequency, per unit frequency). Due to auto-
correlation in a series, the power spectra of a red-noise
(i.e., spectral power decreases as 1/f2), first-order auto-
regressive process is minimized at small periods and
increases logistically with period (Gilman et al. 1962):

Lf ¼ 1−ρ2 1ð Þ
1þ ρ2 1ð Þ−2ρ 1ð Þ � cos

2π� k
l

� � ð19Þ

where Lf is the ratio of the predicted variance relative to
the variance of a random, white-noise (i.e., equal power
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across frequency bands) process. Multiplying Lf by the
white-noise variance produces an estimate of the true
predicted variance. ρ(1) is calculated by substituting 1
for d in Eq. 2. The factor of two within the cosine
argument was not included in the Gilman et al. (1962)
original derivation but included in subsequent applications
(e.g., Torrence andCompo 1998) so that Lf approaches the
maximum variance at frequencies approaching zero. In
Eq. 19, l is the maximum lag distance and k



l is the

frequency as a function of the maximum lag distance l.
The autocorrelation at lag 1, ρ(1), is first modeled in Eq. 2.
At frequencies approaching zero (i.e., maximum period),
the cosine term approaches zero and the maximum pre-
dicted variance in a red-noise spectrum simplifies to:

Lf :max ¼ 1−ρ2 1ð Þ
1þ ρ2 1ð Þ−2ρ 1ð Þ ð20Þ

The normalized variance increases logistically as a
function of the first-order correlation coefficient. The
scale at which the variance can be considered repre-
sentative is the scale where a suitably high proportion
b of the maximum variance, expressed in Eq. 20, is
expected to be observed. Equation 17 can be set
equal to the proportion p of the maximum predicted
variance in Eq. 20 and then solved for the frequency.
The inverse of the frequency is the period at which
measurements of the variance are considered repre-
sentative and can be calculated from Eq. 19. The
frequency from Eq. 17 at which we expect to see p
described in Eq. 19 is the period at which measure-
ments of variance are considered representative. This
relationship can be quantified by combining Eq. 20
and Eq. 17:

Which can be simplified to:

periodrep ¼
l
k
¼ g � 2π

acos

1þ ρ2 1ð Þ−2ρ 1ð Þ
p

� �
−1−ρ2 1ð Þ

−2ρ 1ð Þ

0
BB@

1
CCA

0
BBBBBBBBBB@

1
CCCCCCCCCCA
ð22Þ

Modeled power spectra assume that the scale at
which the variance approaches the maxima is the scale
at which the variance is representative. The only spatial
parameter included in the model is the first-order auto-
correlation, assuming a red-noise, random walk model.

In the Admiralty Inlet data, power spectra are modeled
using the best-fit autocorrelation model previously de-
scribed. This model assumes fish densities are distributed
around a uniform field with first-order autocorrelation.
This assumption is more easily explained as a one-
dimensional time series, where the value at interval n is
only dependent on the previous value and a variance Y,
without any trends, covariates, or natural cycles in the data.

X n ¼ ρ 1ð ÞX n−1

þ Yn; for all n lagged by distance t

ð23Þ

Red-noise spectra were modeled using the lagged
correlation coefficients fit to an exponential decay mod-
el. The proportion of the maximum variance deemed
representative p was set at 95%. The scale at which the
predicted variance reached 95% of the maximum vari-
ance was calculated using Eq. 22.

Equivalent space and time scales

Although the relationship between spatial and temporal
variability periods may be variable, an equivalent spa-
tial period exists for every temporal period. Measure-
ments of temporal variance collected from a point
sensor are considered representative of spatial variabil-
ity at the equivalent spatial period. Assuming linearity
in the spatial and temporal power-law spectra, the
variance at the largest resolvable temporal period, lim-
ited by the Nyquist frequency (i.e., a period of half the
temporal series length, cf. Platt and Denman 1975), can
be compared to the spatial spectra to identify the

(21)
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corresponding spatial period at which equivalent
amounts of variability are expected to be observed.

Wavelet analysis (Torrence and Compo 1998) was
used to compare and contrast representative ranges of
spatial and temporal variance in acoustic data from
Admiralty Inlet. The global wavelet spectra, an aver-
aged wavelet spectra across all instances, is analo-
gous to the Fourier power spectra (Hudgins et al.
1993; Percival 1995; Perrier et al. 1995). Continuous
wavelet transforms, which analyze periods at redun-
dantly small intervals, were used to increase period
resolution (Torrence and Compo 1998) and averaged
through time:

w Tð Þ ¼ W
2
Tð Þ

δ2
¼ 1

N
∑
N−1

n¼0
Wn Tð Þj j2 ð24Þ

where W2
is the mean wavelet power and T is the

bandwidth over which wavelet powers are averaged
over n times to N length. Spatial and temporal scales
were resolved using 12 steps per octave, a common
period resolution in ecological contexts (Urmy et al.
2012), from twice the resolution of the series to the
Nyquist frequency as:

T
2g→Nyquist

¼ g � 2
iþ11ð Þ=12 ð25Þ

where g is the spatial or temporal resolution of the
measurement, and the maximum scale is limited by
half the extent of the series (i.e., Nyquist frequency;
P l a t t and Denman 1975 ) . Wave l e t s wer e
decomposed using a Morlet wavelet of frequency
6, with a known dilation of 1.03 to translate the
wavelet scale to the equivalent Fourier power spec-
tra period (Torrence and Compo 1998). Potential
bias from peaks in the global wavelet spectrum
was not corrected as the bias is a uniform factor of
the wavelet scale in both the spatial and temporal
density series (Liu et al. 2007).

In the Admiralty Inlet data, the global wavelet
spectrum was calculated for all 547 spatial transects
and 360, 12-min temporally-indexed sampling pe-
riods. The mean global wavelet power was calculated
at each spatial and temporal period. Global wavelet
power was calculated as a function of period instead
of frequency to standardize irregularities in line-
transect length. Both wavelet power and scale data
were log-normalized, and a best-fit line was

regressed using linear least squares for both spatially
and temporally-indexed data:

Spatial wavelet power : log10
W

2

s T sð Þ
δ2s

0
@

1
A

¼ ms � log10 Tsð Þ þ bs ð26Þ

Temporal wavelet power : log10
W

2

t T tð Þ
δ2t

0
@

1
A

¼ mt � log10 Ttð Þ þ bt ð27Þ
where m and b are the slope and intercept of the best-fit
lines. The maximum temporal power spectrum is de-
fined as the power spectrum at the Nyquist frequency:

max wt Tð Þð Þ ¼ mt � log10 T 1
2N tð Þ

� �
þ bt ð28Þ

This equation can be substituted into Eq. 26 to find
the spatial scale at which spatial variance matches that
observed at the largest temporal scale:

max wt Tð Þð Þ ¼ ms � log10 Tsð Þ þ bs ð29Þ
and then solved for Ts to yield the representative spatial
scale of the variance Ts.rep:

Ts:rep ¼ 10
max wt Tð Þð Þ−bsð Þ

msð Þ ð30Þ
This result is the scale at which an equivalent amount

of spatial variability is observed at the maximum tem-
poral scale. High spatial (20 m) and temporal (1.2 s)
resolutions are used in the Admiralty Inlet analysis, with
both resulting in six acoustic pings per horizontal data
bin. The suitability of spatial and temporal resolution
choice is checked by calculating the difference in y-
intercepts of each log-normalized modeled spectrum.

Optimizing network design for monitoring objectives

Designing monitoring networks includes choice of min-
imum detectable effect, allowable sampling or interpo-
lation error, and acceptable rate of type I or type II
errors. Current sensor networks for MRE monitoring
programs are typically designed using resource or logis-
tic constraints (e.g., NYSERDA 2011), without atten-
tion to statistical repercussions. The layout and spacing
of sensor packages in monitoring networks should be
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determined by the sampling requirements needed to
meet the network’s objectives. One outcome of compar-
ing methods to estimate representative ranges in this
study is the ability to modularize network design in a
series of objective-driven decisions. The first decision
(Fig. 1) is to choose an indicator variable to measure
change (e.g., fish density). Once an indicator is chosen,
a representative metric is identified to index the quantity
through time (e.g. acoustic density). Once the metric is
identified, the property of the metric (e.g., mean or
variance) is chosen. Historically, declines in the mean
of monitoring quantities have been associated with neg-
ative effects (Green 1979). Changes in the variance of
ecological quantities may affect the health and stability
of ecosystems (Underwood 1991; Schindler et al. 2010),
making the variance of ecological quantities pertinent
metrics of change. The fourth decision is the choice of
monitoring approach. Monitoring the mean facilitates
detecting change and characterizing distributions. The
variability of a quantity can be monitored by determin-
ing the spatial-temporal equivalence or by characteriz-
ing the spatial variance.

Deciding on the monitoring method used in network
design is conditional on previous choices. If detecting
change in the mean is the principle objective, then there
are three paired t-tests/repeated measures ANOVA
available to quantify the required number of sensors
based on differences between pre- and post-
perturbation (e.g., device installation at an MRE site)
measurements. The resulting density of instruments is
estimated as the number of sensors indicated by the
representative range, divided by the site area. Of the
three paired t-test based choices, the power analysis
method includes information on statistical power, resolv-
able effect size, and prevalence of false positives. If the
monitoring objective is to map the distribution of a
monitoring metric, then the spatial autocorrelation ap-
proach quantifies spacing between sensors. Either the
lagged correlation coefficient or lagged coefficient of
determination can be used to estimate a representative
range, but a threshold of what const i tu tes
Brepresentative^ needs to be defined. The coefficient of
determination is recommended as an index due to its
straightforward interpretation as the proportion of

Fig. 1 Decision tree for the design of distributed monitoring networks. Six questions are used to determine a monitoring metric and the
corresponding method to calculate representative range (see text for question detail)
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explained variance. Unlike previous studies that used
significant deviations from a perfect correlation as a
benchmark for representative (e.g., Jacobs 1989), this
study used the range at which observations became
statistically independent as the criterion to determine
representative range. Once the representative range is
determined, then an interpolation error at any point can
be estimated as a function of range (e.g., linear or aerial),
which increases the understanding of uncertainty in spa-
tial models of the monitored quantity. If the network
design objective is to monitor variance of a quantity
within a domain, then the theoretical spatial spectra
should be used to place sensors at the spatial periodicity
that will maximize observed variance. And finally, if the
network design objective is to interpolate temporal var-
iability over space, then the equivalent periods of vari-
ance method should be used. A primary difference be-
tween mean and variance methods is that variance
methods identify the period at which measurements can
be considered equivalent. Neither variance method cal-
culates statistical power.

This approach enables the design of a distributed
monitoring network in a set of six decisions. The six
methods used to estimate representative ranges are dem-
onstrated using fish density at a MRE tidal turbine site,
but we advocate that this approach can be applied to any
aquatic or terrestrial, distributed network. Static sensor
networks provide high-scope, spatiotemporal data that
quantify ecological pattern and increase understanding
of relevant environmental processes across spatial and
temporal scales. Optimizing these networks to meet
objectives will help manage network expectations, in-
crease network performance, increase cost-efficacy, and
simplify network design. Importantly, this approach also
provides tools for ecologists and engineers to quantify
error introduced by spatially interpolating point mea-
surements and to document the rationale used in static
sensor network design decisions.

Admiralty Inlet case study

Admiralty Inlet is the site of the Snohomish Public
Utility District 1 (SnoPUD) tidal energy pilot project
that received its project license from the Federal Energy
Regulatory Commission (FERC) on March 20, 2014.
The site is dynamic, with an average tidal current speed
of 1.4 m s−1 and maximum speeds reaching almost
3 m s−1. The project, now dormant, would deploy two,
6 m OpenHydro turbines (http://www.openhydro.com)

approximately 1 km west of Admiralty Head, Puget
Sound Washington (48.18° N, 122.73° W), at a depth
of approximately 55 m with two sub-sea power cables
connecting the turbines to the onshore electric grid.

Mobile and stationary acoustic surveys

To estimate representative ranges, concurrent spatially-
and temporally-indexed data are needed. Mobile, sur-
face acoustic surveys were used to collect spatially-
indexed data, while a stationary, bottom-deployed
echosounder collected temporally-indexed data. For sur-
face surveys, an 8 km2 grid of six high- (0.25 km) and six
low- (0.5 km) resolution, parallel surface transects
encompassed the proposed location of the tidal turbines.
Mobile acoustic surveys were repeated from May 2 to
May 13 and again from June 3 to June 14, 2011. A
120 kHz Simrad EK60 echosounder with a hull-
mounted transducer was used to measure reflected ener-
gy or mean volume backscattering strength (Sv units dB
re 1 m−1; MacLennan et al. 2002). Acoustic backscatter
is representative of nekton (i.e., macro-invertebrates and
fish that move independently of fluid motion) density in
the water column. The transducer, with a transmit power
of 500 W, had a beam width of 7° (between half power
points). Nekton density was sampled using a pulse du-
ration of 0.512 ms at 1 Hz. The echosounder was cali-
brated using a 38.1 mm tungsten-carbide sphere follow-
ing protocols of Foote et al. (1987).

Temporally-indexed, acoustic backscatter data was
measured using an upward-looking, 120 kHz BioSonics
DTX echosounder (http:/ /www.biosonicsinc.
com/product-dtx-portable-echosounder.asp) mounted on
a S e a Sp i d e r ( h t t p : / /www. o c e a n s c i e n c e .
com/Products/Seafloor-Platforms/Sea-Spiders.aspx)
fiberglass platform that was deployed in 55 m of water at
a distance of approximately 750m fromAdmiralty Head.
The echosounder sampled using a 100W, 0.5 ms pulse at
5 Hz for 12 min every 2 h through a factory calibrated, 7°
beam (between half power points) transducer.

Acoustic data processing

Acoustic data were processed using Echoview (v.5.4.91,
http:\\www.echoview.com) software. Mobile acoustic
measurements were analyzed between 3 m of the
transducer face and a half meter from the bottom to
avoid transceiver saturation, the acoustic nearfield, and
backscatter from the bottom. Backscatter from mobile
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survey measurements was dominated by turbulence
introduced by tidal currents, sometimes extending
from the surface to more than 80 m depth. Turbulence
was identified and excluded from analysis using
Echoview’s school detection algorithm (minimum total
school length = 5 m, minimum total school height =
3 m, minimum candidate length = 5 m, minimum
candidate height = 3 m, maximum vertical linking
distance = 10 m, maximum horizontal linking
distance = 10 m). Detected schools that intersected the
3 m surface exclusion region were classified as surface
turbulence and excluded from further analysis.
Echosounder data were exported at a − 75-dB re 1-m−1

(hereafter dB) threshold and a 16 dB signal-to-noise
ratio, to enhance the exclusion of turbulence.

Stationary acoustic measurements were limited to a
range of 3 to 26 m from the transducer face, correspond-
ing to twice the vertical footprint of the proposed
OpenHydro turbines. Stationary backscatter measure-
ments were exported using a − 75 dB threshold, identi-
cal to that of the mobile survey backscatter measure-
ments. Cells that failed to meet the 16 dB signal-to-noise
ratio were excluded from further analysis.

Correlation coefficients, lagged in space or time,
were used to determine the spatial or temporal resolution
at which mobile or stationary backscatter measurements
of nekton density were independent. Horizontal auto-
correlation of vertically integrated (i.e., summed) mean
volume backscattering strength (i.e., Sv units dB re
1 m−1) was used to determine the range at which mea-
surements became statistically independent. These
ranges were used as the horizontal resolution of the
spatially and temporally-indexed data. Once mobile
and stationary horizontal resolutions were determined,
mean Sv was exported in 1 m vertical bins.

Characterizing vertical density distributions

Data from the 1 m vertical cells were used to derive four
metrics to characterize vertical distribution of nekton
density within each horizontal cell: mean volume back-
scattering strength (mean Sv), center of mass (CM),
inertia (I), and an aggregation index (AI). Mean volume
backscattering strength is a depth-independent metric of
density through the water column. The remaining three
metrics were selected from a suite of metrics developed
by Burgos and Horne (2007) and refined by Urmy et al.
(2012) to summarize the vertical distribution of nekton.
Center of mass (units: m) is the mean weighted location

of backscatter in the water column relative to the bot-
tom. Inertia (units: m2) measures dispersion and is anal-
ogous to the variance of the center of mass. The aggre-
gation index (units: m−1) measures the vertical patchi-
ness of backscatter through the water column calculated
on a scale of 0 to 1, with 1 being aggregated.

Results

Representative range of the mean

Spatial autocorrelation

Spatial autocorrelation of nekton density measurements
decayed as a function of distance (Fig. 2). Exponential
decay models were fit to the lagged Pearson’s correla-
tion coefficient (ρ(h) = 0.803e−01.87d) and lagged coef-
ficient of determination (ρ(h) = 0.3392e−0.168d) models.

The y-intercept of the lagged coefficient of deter-
mination model at lag 1 ρ(1) = 0.286 demonstrates
that less than a third of the variability between se-
quential observations can be explained by autocorre-
lation. Because correlation coefficients were calcu-
lated for each transect, the median length transect
was used to calculate a threshold for significance
(i.e., 2600 m transect sampled at a 20-m resolution,
yielding l = 130 samples). The corresponding length
of the 95% confidence interval for a lagged, correla-
tion coefficient at the median transect length is 0.175
and 0.0307 for the coefficient of determination.
These thresholds correspond to the range at which
observations approach independence. A threshold of
0.0307 results in a representative range of 285.65 m
in Admiralty Inlet. Given a circle with a radius of
285.65 m, an instrument density of 3.82 sensors km−2

is required to monitor the domain (Table 2).

Sample size and power analysis calculations

The mean representative range using the Gray et al.
(1992) formula (Eq. 8) is 403.9 m (Fig. 3a), and the
statistically-derived sample size calculation from Eq. 15
yields a representative mean range of 30.57 m (Fig. 3b).
The power analysis usingα = 0.05 and β = 0.90 (Eq. 16)
results in a mean representative range of 88.45 m
(Fig. 3c). Representative mean ranges of 403.9, 30.57,
and 88.45 m correspond to sensor densities of 1.95,
340.6, and 40.68 sensors km−2 (Table 2).
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Representative range estimates are dependent on the
statistical power used to detect temporal deviations. Set-
ting α = 0.05 and the effect size E = 1 dB constant, the

representative range increases 30% from 88.45 m to
115.41 m when β decreases from 0.9 to 0.7 (Fig. 4). This
increase is smaller than the standard deviation of

Fig. 2 Spatial autocorrelation of acoustic backscatter measure-
ments as a function of distance. Large black points denote the mean
a autocorrelation coefficient or b coefficient of determination

across all 547 transects at each lag distance. Individual correlation
values for each transect are plotted as small points

Table 2 Estimated representative ranges, instrument density, and
estimated monitoring costs per square kilometer. Instrument den-
sity is calculated using the representative range as the radius of a

circular area. Costs are based on a $75,000 USD instrument
package and an Admiralty Inlet site area of 0.09 km2

Method Representative range
(m)

Instrument density
(no. km−2)

Density cost
($ km−2)

Admiralty Inlet
cost ($)

Coefficient of determination 288.65 3.82 286,529 75,000

Gray’s sample size 403.90 1.95 146,340 75,000

T test sample size 30.57 340.61 25,545,859 2,325,000

Power analysis 88.45 40.69 3,051,516 300,000

Theoretical spectra 1388.10 0.17 12,390 75,000

Corresponding spatial
and temporal scales

648.70 0.76 56,731 75,000
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independently calculated representative ranges (α = 0.05,
β = 0.90) for each sampling grid (σ = 36.17 sensors, n =
57). If β is held constant at 0.90 and α is increased from
0.05 to 0.1, then the representative range increases from
88.45 to 97.98 m. To depict potential uncertainty in the
representative range estimates, a one standard deviation
from the mean is shown in Fig. 4 at α = 0.05. The
uncertainty envelope increases as the β value decreases.

Relative standard interpolation error

Interpolating point measurements of fish density poten-
tially introduces errors (Fig. 5a). The absolute interpola-
tion error, analogous to the standard deviation

surrounding the interpolated estimate, is 2.93 dB at the
shortest representative range of 30.57 m (i.e., paired t-test
difference). Since decibels are a logarithmic ratio, a value
± 2.93 dB equates to a potential 96% increase or a
49.93% decrease in fish density at the interpolated point.
The next smallest representative range, calculated using
power analysis, results in an interpolation error of 3.44 dB
(+ 120% or − 54.7%) at a range of 84.45 m. Differences
in interpolation error between the larger two representa-
tive ranges, 285.65 and 403.9 m, are proportionately
small compared to the interpolation error at shorter repre-
sentative ranges. The interpolation error stabilizes and
asymptotically approaches the average standard devia-
tion, 4.32 dB, at ranges greater than approximately 450m.

Areal interpolation errors increase following a power
function (Fig. 5b). The error when estimating fish den-
sity over an area defined by a representative range of
30.57 m (2.9 × 10−3 km2) is 2.4 dB (i.e., an increase of
73.8%), which increases to 3.69 dB (+ 133.88%) over
an area defined by a range of 88.45 m. The interpolation
error further increases to 6.37 dB (+ 333.5%) within the
area defined by a radius of 285.65 m and to 7.53 dB
(+ 466.2%) at a range of 403.9 m.

Representative ranges of variance

The relative variance modeled from the first-order auto-
correlation of fish densities asymptotically approaches a
maximum value of 4.98 times the white-noise variance
over infinite periods. The scale at which 95% of the
maximum variance, 4.74, is measured was considered
the representative scale of the variance. The relative
variance exceeds the 95% maximum threshold at a

Fig. 3 Frequency distributions of acoustic backscatter represen-
tative ranges calculated for each sampling grid required to identify
a 1 dB change from a the Gray et al. (1992) formula, b sample size

calculation to identify mean paired differences, and c a power
analysis with α = 0.05 and β = 0.90

Fig. 4 Representative ranges of mean backscatter density from
surface acoustic grid surveys (n = 57) calculated using threeα values
(0.25, 0.1, 0.05) from paired t-test, power analyses. The polygon
envelops the mean range at α = 0.05 ± one standard deviation
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period of 1338 m (Fig. 6 and Table 2). Data analyzed
over larger periods than 1338 m would see negligible
increases in variance.

As expected, spatial and temporal spectral power in-
creases with period (Fig. 7). The y-intercepts from both
spatial and temporal spectra are nearly identical (0.34 and
0.33 log10(dB

2)), strengthening the supposition that spatial
and temporal resolutions are comparable. Since there is no
equivalence between spatial and temporal units, it is not
possible to statistically test differences between the two
spectra. Ordinate units were set relative to the 20 m and
1.2 s resolutions of the spatial and temporal surveys. At
these resolutions, the spatial spectra (Y = 0.34 + 0.777x)
increase more rapidly than the temporal spectra (Y =
0.33 + 0.478x). The modeled maximum temporal variance
at the Nyquist frequency, equivalent to a period of 6 min, is
1.51 log10(dB

2). The corresponding amount of spatial

Fig. 5 Interpolation errors of a backscatter point measurements to
spatially discreet points and b backscatter point measurements to
representative areas. The representative ranges of the mean for

each algorithm are marked for the linear distance and the radius of
a circle (see Table 2)

Fig. 6 A first-order, auto-regressive, theoretical power spectra of fish
density. The representative range of the variance is arbitrarily set to the
period corresponding to 95% of the maximum expected variance
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variability occurs at a period of 648.7 m, which is
interpreted as the representative range (Table 2). An ap-
proximately equal amount of variance is observed within
the calculated 547 spatial and 360 temporal spectra, as
denoted by standard deviation envelopes.

Summary of representative ranges

The representative spatial range of static temporal sensors is
dependent on the quantitymeasured, the derivationmethod,
and associated assumptions. Among the four methods used
to quantify representative range ofmean fish density, values
range from 30.6 to 403.9 m. Representative ranges of the
variance are 648.7 and 1388.1 m (Table 2). When repre-
sentative ranges are used as radii to calculate representative
circular areas, complete coverage requires a minimum of
1.95 to 340.61 sensors per square kilometer. Sensor densi-
ties measuring the mean are higher than those needed to
monitor the variance, suggesting that networks designed to
measure themean of a quantity (e.g., fish density) will have
adequate spatial coverage to also characterize the variance.

Discussion

Comparison of methods

The six methods used to calculate representative ranges
vary in their assumptions and resulting estimates. The four

methods used to quantify representative ranges of a mean
assume a random sampling pattern, which ignores addi-
tional information from spatial autocorrelation measures.
The random sampling methods do not use multiple con-
trol sites that are needed to detect change from an initial
condition (Skalski and McKenzie 1982; Underwood
1994) but provide an example of how to calculate repre-
sentative range for paired t- test/ANOVA-based sampling
approaches. The spatial autocorrelation method identifies
the range at which measurements become statistically
independent, assuming that as spatial autocorrelation ap-
proaches zero, measurements become statistically inde-
pendent. Spatial autocorrelation is dependent on the loca-
tion, resolution, and spatial extent of the data (Ciach and
Krajewski 2006; Ciannelli et al. 2008). In systems where
variance increases with range (e.g., spatial drift, gradient;
Wiens 1989), the representative range will increase as the
survey area is expanded. Therefore, the domain of a
network must be delineated before the representative
range can be used for network design.

Matching temporal to spatial variance scales assumes
that temporal and spatial variances are equivalent. Links
between spatial periods of physical processes and tem-
poral scales have been demonstrated (e.g., Steele et al.
1994; Wu 1999), including scale-dependent differences
in the autocorrelation of rainfall (Ciach and Krajewski
2006). Wiens (1989) noted that long-term studies con-
ducted over small spatial scales have low predictive
power, whereas studies covering large spatial extents
over short temporal periods have high pseudo-predict-
ability, as repeated samples typically have short tempo-
ral sampling intervals. The importance of analyzing
spatiotemporal data at equivalent spatial and temporal
scales has been emphasized (Wiens 1989), but there
remains a lack of methods to accomplish this task.
Quantifying the relationship between spatial and tempo-
ral variance spectra provides one approach.

The six methods used to estimate representative
ranges are not exhaustive but represent those available
for a priori network design using data from baseline
samples. A posteriorimethods to optimize the density of
established networks exist (e.g., Sulkava et al. 2011) but
are limited to network optimization. Evaluating a
posteriori methods is beyond the scope of this study
but should be used during operations to test network
performance and to optimize the spatial allocation of
sampling effort. As an example, Janis and Robeson
(2004) identify instances when a network could not be
considered representative based on the magnitude of

Fig. 7 Spatial (diamond) and temporal (circle) power spectra,
calculated using the global wavelet spectrum. Spatial and temporal
data units on the x-axis correspond to spatial and temporal resolu-
tions of 20m and 1.2 s. The dashed line in each plot is the modeled
log-normalized spectrumwith the corresponding equation noted in
the legend. The representative range is the spatial period (648.7 m)
with identical magnitudes of temporal variance
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variability at resolutions coarser than that of the network
(i.e., analogous to the nugget effect).

Biological monitoring at Marine Renewable Energy
sites

Monitoring programs at MRE sites represent a large
portion of pilot site development costs (e.g.,
NYSERDA 2011) and contribute to both operating
and decommissioning costs during the life cycle of all
MRE projects. Biological monitoring at MRE sites
should be as efficient and cost-effective as possible.
Stationary sensor networks are assumed to be more
cost-effective than repeated, mobile surveys due to labor,
fuel, and vessel operation costs. Still, the cost of static
monitoring networks may be unnecessarily increased by
the environmental precautionary principle (Underwood
1997; Underwood and Chapman 2003), where any
Berror^ or uncertainty in survey design should favor
environmental protection and will inflate costs of imple-
mentation. Quantifying the representative range and the
spatial interpolation error removes uncertainty in the
monitoring network design and reduces monitoring costs
by identifying the minimum number of sensor packages
for complete coverage of the site. Depending on the
spatial extent of the network and the cost of purchasing,
deploying, retrieving, and analyzing data from sensors,
representative ranges estimated in this study should re-
duce costs compared to the ad hoc network designs of
current MRE biological monitoring programs.

The density of sensor packages within a monitoring
network potentially affects the economic feasibility of
expanding pilot (i.e., 100 m2) to commercial (i.e.,
10 km2) scale MRE sites. Using an estimated cost of
$75,000 for an acoustic monitoring package (e.g.,
NYSERDA 2011, Verdant Power 2010a), the proposed
Admiralty Inlet tidal turbine site (area = 0.09 km2) would
require 31 monitoring packages using the most conser-
vative t-test sample approach, 4 using the power analysis,
and 1 using the Gray et al. (1992) or the Anttila et al.
(2008) methods. This range represents a cost difference
$2.25 million USD to monitor the Admiralty Inlet site
(Table 2). As a comparison, the Roosevelt Island Tidal
Energy project in East River NewYork deployed an array
of 24 acoustic transducers (NYSERDA 2011) to monitor
a 0.086-km2 site (FERC 2012), as a component of a
$2.35 million monitoring plan that costs an additional
$340,000 annually for operations and maintenance
(Verdant Power 2010b). The site area and number of

sensors used in monitoring the Roosevelt Island Tidal
Energy project translate to a representative range of
33.77 m, consistent with the most conservative represen-
tative range estimated for Admiralty Inlet. When pilot
projects are scaled to commercial operations, differences
in monitoring costs will be further amplified depending
on the choice of metric property (i.e., mean or variance)
and the method used to calculate representative range.
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